Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 71(4): 400-404, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32687604

ABSTRACT

The objective was to carry out cytotoxicity assays in Vero cells and cytokines analyses in Balb/c mice as safety assessments to evaluate the probiotic mixture (M) Saccharomyces cerevisiae RC016 (Sc) and Lactobacillus rhamnosus RC007 (Lr) for use as feed additive. Vero cells (104 cells per well) were exposed to Sc (2·08 × 107 , 2·08 × 106 ; 2·08 × 105 cells per ml), Lr (8·33 × 107 ; 8·33 × 106 ; 8·33 × 105 cells per ml) and their M (1 : 1). Sc concentrations did not affect the Vero cells viability; in contrast, they were lower when exposed to Lr (P Ë‚ 0·0001). Vero cells showed increasing viability with M decreasing concentrations (91% viability with M2). Control BALB/c mice received only phosphate buffer saline and the others received the M. The IL-10, IL-6 and TNFα concentrations from intestinal fluid were analysed and no significant differences were observed among treatments. The same occurred with the ratio between IL-10/TNF-α. Beneficial effects of probiotics are associated with the regulation of the excessive inflammatory response; it is desirable they can modulate the cytokines production only under pathological conditions. Here, M administration to healthy mice did not induce negative side effects and expands the knowledge about beneficial effects of using probiotic microorganisms in mixture for feed additives development.


Subject(s)
Food Additives/analysis , Lacticaseibacillus rhamnosus/metabolism , Probiotics/pharmacology , Saccharomyces cerevisiae/metabolism , Animal Feed/analysis , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cytokines/genetics , Cytokines/immunology , Food Additives/adverse effects , Interleukin-10/immunology , Mice , Mice, Inbred BALB C , Probiotics/adverse effects , Probiotics/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vero Cells
2.
Arq. bras. med. vet. zootec. (Online) ; 72(3): 862-870, May-June, 2020. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1129541

ABSTRACT

The aim of this study was to evaluate in vitro the probiotic potential and absorption of Saccharomyces cerevisiae for the aflatoxin B1 in simulated fish intestinal tract conditions. Three yeast strains were used, two from brewery: S. cerevisiae RC1 and S. cerevisiae RC3 and one from a fish farming environment: S. cerevisiae A8L2. The selected yeasts were subjected to the following in vitro tests: homologous inhibition, self-aggregation, co-aggregation, antibacterial activity, gastrointestinal conditions tolerance and adsorption of AFB1. All S. cerevisiae strains showed good capability of self-aggregation and co-aggregation with pathogenic bacteria. All yeast strains were able to survive the gastrointestinal conditions. In acidic conditions, the factors (strain vs. time) had interaction (P=0.0317), resulting in significant variation among the strains tested in the time periods analyzed. It was observed that there was also interaction (P=0.0062) in intestinal conditions, with an increased number of cells in the 12-hour period for all strains tested. In the adsorption test, the A8L2 strain was statistically more effective (P<0.005) for both AFB1 concentrations evaluated in this study (10 and 25ng/mL). Thus, it was observed that the strains of S. cerevisiae have potential probiotic and adsorbent of AFB1.(AU)


Objetivou-se, com esta pesquisa, avaliar in vitro o potencial probiótico e adsorvente de Saccharomyces cerevisiae para aflatoxina B1 em condições simuladas do trato intestinal de peixes. Foram utilizadas três cepas de leveduras, sendo duas provenientes de cervejaria: S. cerevisiae RC1 e S. cerevisiae RC3, e uma de ambiente de piscicultura: S. cerevisiae A8L2. As leveduras selecionadas foram submetidas aos seguintes testes in vitro: inibição homóloga, autoagregação, coagregação, atividade antibacteriana, viabilidade às condições gastrointestinais e adsorção de AFB1. Todas as estirpes de S. cerevisiae mostraram boa capacidade de autoagregação e coagregação com bactérias patogênicas. Todas as estirpes de levedura foram capazes de sobreviver às condições gastrointestinais. Em condições ácidas, os fatores (cepa x tempo) tiveram interação (P=0,0317), resultando em variações significativas entre as cepas testadas nos períodos de tempo analisados. Observou-se que também houve interação (P=0,0062) em condições intestinais, havendo um aumento do número de células no período de 12h para todas as cepas avaliadas. No ensaio de adsorção, a estirpe A8L2 foi a mais eficaz estatisticamente (P<0,005), para as duas concentrações de AFB1 avaliadas neste estudo (10 e 25ng. mL-1). Dessa forma, conclui-se que as cepas de Saccharomyces cerevisiae possuem potencial probiótico e adsorvente de AFB1.(AU)


Subject(s)
Animals , Saccharomyces cerevisiae , Aflatoxin B1/antagonists & inhibitors , Probiotics/therapeutic use , Fishes/physiology , Intestines/microbiology , In Vitro Techniques , Adsorption
3.
J Appl Microbiol ; 126(1): 223-229, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30188600

ABSTRACT

AIMS: (i) To determine the aflatoxin B1 (AFB1 ) adsorption and desorption dynamics in the presence of Lactobacillus rhamnosus RC007 under simulated transit of AFB1 at each gastrointestinal tract (GIT-saliva, stomach and intestine) stage consecutively and then, separately, (ii) to study the ability of L. rhamnosus RC007 to biotransform AFB1 as a strategy that complements the adsorption process. METHODS AND RESULTS: The AFB1 adsorption and desorption assay simulating the GIT passage of AFB1 (93·89 ng g-1 ) in the presence of L. rhamnosus RC007 (108 CFU per ml) was conducted. Moreover, lactic acid production was determined. Results demonstrated that predominant environmental conditions in salivary solution induced a low AFB1 adsorption, while the transit through the gastric solution and intestinal solution allowed high percentages of adsorption and did not generate significant AFB1 desorption. CONCLUSIONS: The AFB1 adsorption and desorption dynamics in the presence of L. rhamnosus RC007 was favoured by gastric and intestinal environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge of the adsorption dynamics of AFB1 with a micro-organism of interest will allow predicting its behaviour at each stage of the GIT.


Subject(s)
Aflatoxin B1/metabolism , Gastrointestinal Tract/metabolism , Lacticaseibacillus rhamnosus/metabolism , Adsorption , Animals , Gastrointestinal Tract/microbiology , Lactic Acid/metabolism , Models, Biological
4.
Benef Microbes ; 10(1): 33-42, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30274522

ABSTRACT

Probiotics represents an alternative to replace antibiotics as growth promoters in animal feed and are able to control enteric bacterial diseases and to improve gut immunity. Saccharomyces cerevisiae RC016 showed previously inhibition/coagregation of pathogens) and mycotoxins adsorbent ability (aflatoxin B1, ochratoxin A and zearalenone). The aim of this work was to evaluate beneficial properties of S. cerevisiae RC016 in a non-inflammatory in vivo model in weaned piglets and in an intestinal inflammation ex vivo model induced by the mycotoxin deoxynivalenol (DON). Secretory immunoglobulin A (s-IgA) levels, intestinal cytokines, goblet cells and production parameters were evaluated in a pig model. For the in vivo assays, twelve pigs were weaned at 21 days and assigned to two groups: Control (n=6) and Yeast (n=6). Animals received yeast strain for three weeks. After 22 days the small intestine was recovered for determination of goblet cells and s-IgA. For the ex vivo assay, jejunal explants were obtained from 5 weeks old crossbred piglets and treated as follow: (1) control; (2) treated for 3 h with 10 µM DON used as an inflammatory stressor; (3) incubated with 107 cfu/ml yeast strain; (4) pre-incubated 1 h with 107 cfu/ml yeast strain and then treated for 3 h with 10 µM DON. CCL20, interleukin (IL)-1ß, IL-8 and IL-22 gene expression was determined by qPCR. Oral administration of S. cerevisiae RC016 increased s-IgA, the number of goblet cells in small intestine and all the growth parameters measured. In the ex vivo model, the cytokine profile studied showed a potential anti-inflammatory effect of the administration of the yeast. In conclusion, S. cerevisiae RC016 is a promising candidate for feed additives formulation to improve animal growth and gut immune system. This yeast strain could be able to improve the gut health through counteracting the weaning-associated intestinal inflammation in piglets.


Subject(s)
Enteritis/prevention & control , Enteritis/therapy , Food Additives/administration & dosage , Probiotics/administration & dosage , Saccharomyces cerevisiae/physiology , Animal Feed/analysis , Animals , Cecum/microbiology , Cytokines/genetics , Enteritis/chemically induced , Gene Expression , Goblet Cells/cytology , Immunoglobulin A/metabolism , Intestines/immunology , Male , Models, Biological , Swine , Trichothecenes/poisoning , Weaning
5.
Food Chem Toxicol ; 124: 316-323, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30557671

ABSTRACT

Microbial degradation of aflatoxins (AFs) is an alternative to the use of mycotoxin binders. The lactone ring is a possible target for microbial enzymes and its cleavage reduces AFs toxicity. The aim of this study was to isolate and identify Bacillus strains able to degrade AFB1 to less toxic metabolites and to identify aiiA genes encoding for N-acyl-homoserine lactone (AHL) lactonase to possibly correlate detoxification with the production of this enzyme. Eleven soilborne Bacillus strains were isolated and identified by MALDI-TOF MS. Ten cultures and eight cell free culture supernatants (CFCS) were able to significantly (P < 0.05) degrade 27.78-79.78% AFB1. Cell lysates were also able to degrade AFB1 (P < 0.05). Exposure to 70 and 80 °C did not affect enzyme activity. Aflatoxin B1 toxicity towards Artemia salina was reduced after degradation by each of the Bacillus strains. B. subtilis RC1B, B. cereus RC1C and B. mojavensis RC3B, amplified a fragment of 753 pb corresponding to the aiiA gene encoding for AHL lactonase. AFB1 degradation by the strains tested was due to the extracellular and intracellular enzymes. If demonstrated to be safe, these could be used to detoxify AFB1 in contaminated food or feed.


Subject(s)
Aflatoxin B1/metabolism , Bacillus/metabolism , Carboxylic Ester Hydrolases/metabolism , Aflatoxin B1/chemistry , Aflatoxin B1/toxicity , Animals , Artemia/drug effects , Bacillus/classification , Bacillus/enzymology , Bacillus/genetics , Carboxylic Ester Hydrolases/genetics , Hydrolysis , Temperature
6.
Food Res Int ; 111: 306-313, 2018 09.
Article in English | MEDLINE | ID: mdl-30007690

ABSTRACT

The objectives of this study were: to evaluate the use of dry distillery grain soluble extract - DDGse to produce yeast biomass and to obtain cell wall (CW), to use the CW as an aflatoxin B1 (AFB1) adsorbent, to study the variation in the composition and thickness of the CW under the influence of DDGse to evaluate their implication on the adsorption process using transmission electron microscopy (TEM) and fourier-transform infrared spectroscopy (FITR). The production of biomass and CW were variable. The CW thickness values showed that S. boulardii strain grown in yeast extract peptone dextrose (YPD) or DDGse medium, with no significant differences observed. The thickness of the CW for S. cerevisiae (RC012 and VM014) were increased when the cells were grown in DDGse medium, the thickness was almost double compared to the values obtained in YPD medium. The spectra IR of each CW in the two culture media shown regions corresponding to polysaccharides, proteins and lipids. Cells grown in DDGse medium adsorbed more AFB1 than those grown in YPD. The CW adsorbed more AFB1 than the same amount of whole cell. Future studies should be done to determine the type of carbohydrates and the relationship between chitin - beta glucans responsible for mycotoxin adsorption.


Subject(s)
Aflatoxin B1/analysis , Agriculture , Cell Wall/chemistry , Industrial Waste , Saccharomyces boulardii/metabolism , Saccharomyces cerevisiae/metabolism , Adsorption , Biomass , Cell Wall/metabolism , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
8.
Mycotoxin Res ; 33(4): 273-283, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28687999

ABSTRACT

The aim of this study was to evaluate the efficacy of autochthonous Pichia kudriavzevii as a novel bioadsorbent for aflatoxin B1 (AFB1). The selection of this yeast was based on the AFB1 adsorption capacity previously demonstrated in vitro (Magnoli et al. 2016). One-day-old Cobb broilers (n = 160) were randomly assigned to four dietary treatments (T1: basal diet (B); T2: B + 0.1% yeast; T3: B + AFB1, 100 µg/kg; T4: B + 0.1% yeast + AFB1, 100 µg/kg). Performance parameters (average daily weight gain body, average daily consumption, feed conversion ratio, carcass weight, and dead weight), biochemical parameters (albumin, globulin, and albumin/globulin), liver pathological changes, and AFB1 residual levels in the liver and excreta were evaluated. Significant differences (P < 0.05) in performance parameters were observed among treatments and controls: T3 group showed the lowest average daily body weight gain value while in T4 group, the value of this parameter increased significantly (P < 0.05). T3 and T4 groups showed the lowest and highest values for average daily feed consumption, respectively. The feed conversion ratio (FC) showed no significant differences among treatments. T3 group showed the lowest dead weight and carcass weight compared with T1 group. The biochemical parameters showed no significant differences among treatments. T3 group showed macroscopic and microscopic liver changes compared to the control. Aflatoxin B1 levels (µg/g) were detected in broiler livers and showed significant differences among treatments (P < 0.05). In conclusion, native P. kudriavzevii incorporation (0.1%) in broiler diets containing AFB1 was shown to be effective in ameliorating the adverse effects of AFB1 on production.


Subject(s)
Aflatoxin B1/adverse effects , Chickens , Dietary Supplements , Pichia , Poultry Diseases/prevention & control , Animal Feed/analysis , Animals , Diet/veterinary , Liver/metabolism , Male , Poultry Diseases/pathology , Random Allocation
9.
J Appl Microbiol ; 121(6): 1766-1776, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27638385

ABSTRACT

AIMS: To isolate and characterize native yeast strains from broilers' environment as feedstuff, faeces and gut, and to evaluate their binding capacity for aflatoxin B1 (AFB1 ). METHODS AND RESULTS: A total of nine yeast strains were isolated: three from feedstuff identified as Pichia kudriavzevii (2) and Clavispora lusitaniae (1), two from gut identified as Candida tropicalis and four from faeces identified as Cl. lusitaniae (3) and Cyberlindnera fabianii (1). AFB1 binding percentages varied among yeast strains and with AFB1 concentrations. To carry out adsorption studies, one strain from each genus and each origin was selected as follows: Cl. lusitaniae and P. kudriavzevii from feedstuff, Cl. lusitaniae and Cy. fabianii from faeces and Ca. tropicalis from gut. The most appropriate concentrations for cells and toxin were 107 cells per ml and 100 ng ml-1 of AFB1 respectively. All the tested yeast strains showed similar adsorption capacities independently of the origin. The adsorption isotherm studies in all yeasts assayed showed behaviour of L type or Langmuir and a varied affinity for the toxin. The stability of the AFB1 -yeast complex demonstrated the irreversibility of the binding process. CONCLUSION: Yeast strains tested in this study constitute potential AFB1 adsorbents and they possess the advantage to be native from the avian environment. SIGNIFICANCE AND IMPACT OF THE STUDY: This study makes a contribution to using native yeasts from broilers' environment for controlling chronic aflatoxicosis in avian production.


Subject(s)
Aflatoxin B1/metabolism , Chickens/microbiology , Yeasts/metabolism , Adsorption , Animal Feed/microbiology , Animals , Feces/microbiology , Intestines/microbiology , Yeasts/isolation & purification
10.
Vet Immunol Immunopathol ; 176: 44-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26927634

ABSTRACT

The aim of this work was to study the long-lasting consequences of different weaning age on physiological, immunological and microbiological parameters of weaned piglets. Piglets were weaned at 14 days (14W) or 21 days (21W). Blood samples were taken for IgG and cortisol determination on preweaning day and at 4; 20 and 40 post-weaning days. Three animals of each group were sacrificed. Small intestines for morphometric studies and secretory-IgA determination in fluid were taken. The cecum was obtained for enterobacteria, lactobacilli and total anaerobes enumeration. A significant decrease in piglet's plasma IgG concentrations was observed immediately after weaning and no differences were found between 14W and 21W. An increase in intestinal S-IgA was observed according to piglet's age. This increase was significantly higher in piglets 14W compared to piglets 21W. Animals from 14W group showed a decrease in villus length and in the number of goblet cells and intraepithelial lymphocytes. Other parameters were not affected by the weaning age. A short-term increase in cortisol was observed after weaning in both experimental groups. Enterobacteria decreased significantly after weaning in both groups, reaching values of weaning after 40 days. Lactobacilli counts decreased in both groups after weaning; however their counts were always higher than those obtained for enterobacteria. No differences were observed between 14W and 21W with regards to counts of anaerobes. The shortening of breast feeding time would favor an early synthesis of intestinal S-IgA after weaning. The changes observed in the microbiota could decrease postweaning enteric infections. However, early weaning induced negative effects on the cells of gut innate immunity and villi atrophy. This work provides knowledge about advantages and disadvantages at different weaning and long-lasting consequences on pig health. It is critical that swine producers become aware of the biological impacts of weaning age, so as to be able to decide the appropriate management strategies according to their facilities and rearing environment.


Subject(s)
Breeding , Swine/immunology , Weaning , Age Factors , Animals , Cecum/microbiology , Enterobacteriaceae/isolation & purification , Farms , Hydrocortisone/blood , Immunoglobulin A, Secretory/analysis , Immunoglobulin G/blood , Intestines/cytology , Intestines/immunology
11.
Int J Food Microbiol ; 210: 92-101, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26114593

ABSTRACT

Aspergillus section Nigri is a heterogeneous fungal group including some ochratoxin A producer species that usually contaminate raisins. The section contains the Series Carbonaria which includes the toxigenic species Aspergillus carbonarius and nontoxigenic Aspergillus ibericus that are phenotypically undistinguishable. The aim of this study was to examine the diversity of black aspergilli isolated from raisins and to develop a specific genetic marker to distinguish A. ibericus from A. carbonarius. The species most frequently found in raisins in this study were Aspergillus tubingensis (35.4%) and A. carbonarius (32.3%), followed by Aspergillus luchuensis (10.7%), Aspergillus japonicus (7.7%), Aspergillus niger (6.2%), Aspergillus welwitschiae (4.6%) and A. ibericus (3.1%). Based on inter-simple sequence repeat (ISSR) fingerprinting profiles of major Aspergillus section Nigri members, a sequence-characterized amplified region (SCAR) marker was identified. Primers were designed based on the conserved regions of the SCAR marker and were utilized in a PCR for simultaneous identification of A. carbonarius and A. ibericus. The detection level of the SCAR-PCR was found to be 0.01 ng of purified DNA. The present SCAR-PCR is rapid and less cumbersome than conventional identification techniques and could be a supplementary strategy and a reliable tool for high-throughput sample analysis.


Subject(s)
Aspergillus/genetics , Food Microbiology/methods , Genetic Markers/genetics , Vitis/microbiology , Argentina , Aspergillus/isolation & purification , Aspergillus niger/genetics , Biodiversity , DNA Primers/genetics , DNA, Fungal/genetics , Microsatellite Repeats , Polymerase Chain Reaction , Species Specificity
12.
Mycotoxin Res ; 31(3): 145-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982450

ABSTRACT

In this study, gliotoxin production by Aspergillus fumigatus strains from animal environment is studied. Moreover, a rapid, easy and environment-friendly micro-analytical sample treatment procedure coupled with LC-MS/MS was applied for the determination of gliotoxin from A. fumigatus cultures. The ability of gliotoxin production by 143 strains was assayed in yeast extract sucrose agar, and 1 ml of chloroform was used for toxin extraction without further clean-up. Mean recoveries at two spiking levels (2500 and 7000 ng/g; n = 6) were 100.3 ± 6.6 % relative SD (RSD) and 92.4 ± 3.8 % RSD. Repeatability and within-laboratory reproducibility for different concentration levels of gliotoxin (25 to 1000 ng/ml; n = 12) ranged from 0.3 to 5.4 % RSD and from 3.9 to 12.7 % RSD, respectively. The detection limit of the analytical method was 3.5 ng/g. The ability for gliotoxin production by A. fumigatus revealed that 61.5 % of the strains were able to produce the toxin at levels ranging from LOQ to 3430.5 ng/g. However, all the tested samples had similar percentages of producing strains (81.8 to 86.6 %). The micro-analytical sample treatment coupled with LC-MS/MS detection is a precise and useful methodology for determining gliotoxin from fungal extracts of A. fumigatus and allows working both fast and safely and also reducing the effect on the environment. This toxin plays a critical role in the pathobiology of A. fumigatus, and its presence in animal environments could affect animal health and productivity; in addition, there are risks of contamination for rural workers during handling and storage of animal feedstuffs.


Subject(s)
Aspergillus fumigatus/metabolism , Food Contamination/analysis , Gliotoxin/analysis , Silage/microbiology , Animals , Chromatography, High Pressure Liquid , Gliotoxin/metabolism , Reproducibility of Results , Tandem Mass Spectrometry
13.
J Appl Microbiol ; 117(3): 824-33, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24849144

ABSTRACT

AIMS: To acquire data on the safety-in-use of the probiotic Saccharomyces cerevisiae RC016 and test its ability to reduce genotoxicity caused by dietary aflatoxins (AFs). METHODS AND RESULTS: The probiotic was orally administered to Wistar rats. Six groups (n = 6) were arranged: feed and probiotic controls, two levels of AFs-contaminated feed and two treatments including both the probiotic and the toxin. Genotoxiciy and cytotoxicity were evaluated with the bone marrow micronuclei assay and the comet assay and internal organs were macroscopically and microscopically examined. The tested S. cerevisiae strain did not cause genotoxicity or cytotoxicity in vivo, and it was able to attenuate AFs-caused genotoxicity. Saccharomyces cerevisiae RC016 did not cause any impairment on the rats' health and it showed no negative impact on the weight gain. Moreover, RC016 improved zootechnical parameters in AFs-treated animals. The beneficial effects were likely to be caused by adsorption of AFs to the yeast cell wall in the intestine and the consequent reduction in the toxin's bioavailability. CONCLUSIONS: The dietary administration of RC016 does not induce genotoxicity or cytotoxicity to rats. SIGNIFICANCE AND IMPACT OF THE STUDY: Incorporation of RC016 in the formulation of feed additives increases animal productivity. Similar effects may even occur in human food applications.


Subject(s)
Probiotics/toxicity , Saccharomyces cerevisiae , Administration, Oral , Aflatoxins/toxicity , Animal Feed , Animals , DNA Damage , Male , Rats , Rats, Wistar , Toxicity Tests, Subchronic
14.
Lett Appl Microbiol ; 57(5): 405-11, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23815153

ABSTRACT

The purposes of this study were to determine the distribution of total mycobiota, to determine the occurrence of Aspergillus spp., Penicillium spp. and Fusarium spp. and to detect and quantify fumonisin B1 and aflatoxin B1 in birds' feedstuffs. Sixty samples from different commercial feeds were collected. Analysis of the total mycobiota was performed and total fungal counts were expressed as CFU g(-1). The isolation frequency (%) and relative density (%) of fungal genera and species were determined. Mycotoxins determination was carried out using commercial ELISA kits. The 48% of standard, 31% of premium and only 9% of super premium feed samples were found above of recommended limit (1 × 10(4) CFU g(-1)). Aspergillus (82%), Cladosporium (50%) and Penicillium (42%) were the most frequently isolated genera. Aspergillus niger aggregate (35%), Aspergillus fumigatus (28%) and Aspergillus flavus (18%) had the highest relative densities. Contamination with fumonisins was detected in 95% of total samples with levels from 0·92 to 6·68 µg g(-1), and the aflatoxins contamination was found in 40% of total samples with levels between 1·2 and 9·02 µg kg(-1). Feed samples contaminated with fumonisins and aflatoxins are potentially toxic to birds.


Subject(s)
Aflatoxins/analysis , Animal Feed/microbiology , Birds , Fumonisins/analysis , Fungi/isolation & purification , Animal Feed/analysis , Animals , Brazil , Colony Count, Microbial , Food Contamination , Fungi/classification , Pets
15.
Lett Appl Microbiol ; 57(6): 484-91, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23889550

ABSTRACT

UNLABELLED: Aspergillus fumigatus, a well-known human and animal pathogen causing aspergillosis, has been historically identified by morphological and microscopic features. However, recent studies have shown that species identification on the basis of morphology alone is problematic. The aim of this work was to confirm the taxonomic state at specie level of a set of clinical (human and animal) and animal environment A. fumigatus strains identified by morphological criteria applying a PCR-RFLP assay by an in silico and in situ analysis with three restriction enzymes. The A. fumigatus gliotoxin-producing ability was also determined. Previous to the in situ PCR-RFLP analysis, an in silico assay with BccI, MspI and Sau3AI restriction enzymes was carried out. After that, these enzymes were used for in situ assay. All A. fumigatus strains isolated from corn silage, human aspergillosis and bovine mastitis and high per cent of the strains isolated from cereals, animal feedstuff and sorghum silage were able to produce high gliotoxin levels. Also, all these strains identified by morphological criteria as A. fumigatus, regardless of its isolation source, had band patterns according to A. fumigatus sensu stricto by PCR-RFLP markers. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspergillus fumigatus is a well-known human and animal pathogen causing aspergillosis. In this study, clinical (human and animal) and animal environment strains were able to produce high gliotoxin levels and had band profiles according to A. fumigatus sensu stricto by PCR-RFLP markers. The results obtained here suggest that strains involved in human and animal aspergillosis could come from the animal environment in which A. fumigatus is frequently found. Its presence in animal environments could affect animal health and productivity; in addition, there are risks of contamination for rural workers during handling and storage of animal feedstuffs.


Subject(s)
Aspergillosis/microbiology , Aspergillosis/veterinary , Aspergillus fumigatus/classification , Edible Grain/microbiology , Gliotoxin/metabolism , Mastitis, Bovine/microbiology , Silage/microbiology , Animals , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Aspergillus fumigatus/metabolism , Bacterial Typing Techniques , Base Sequence , Brazil , Cattle , Female , Humans , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
16.
Article in English | MEDLINE | ID: mdl-23573803

ABSTRACT

The main objective of this study was to evaluate the interference of environment components on the in vitro evaluation of aflatoxin B1 adsorption capacity of sodium bentonite under simulated gastrointestinal conditions of monogastric and ruminant animals. Sodium bentonite showed a high aflatoxin B1 affinity with all of the assays. Langmuir or sigmoid isotherms were found in different assays. Both the affinities and the surface excesses at monolayer saturation were affected by the buffer components. The specific influence of ions in each buffer solution was investigated. A significant decrease in the surface excess at monolayer saturation was observed under ionic strength control. A change in the isotherm shape from sigmoidal to Langmuir was observed with the increase in the sodium chloride concentration. This was attributed to the decrease in the importance of lateral interaction between adsorbed toxin molecules compared with surface-molecules interactions under a high salt coverage. The presence of rumen fluid components in the adsorption environment decreased the aflatoxin B1 maximum adsorption capacity of sodium bentonite. Despite the high affinity of this adsorbent to capture aflatoxin B1, different substances present in the environment could affect the adsorption capacity, at least at low toxin concentrations that mimic chronic exposure. The environment of the gastrointestinal tract, in either monogastric or ruminant animals, affect in vivo aflatoxin B1 adsorption by sodium bentonite and should be taken into account when an in vitro performance evaluation is done.


Subject(s)
Aflatoxin B1/pharmacology , Bentonite/chemistry , Gastrointestinal Tract/metabolism , Adsorption , Aflatoxin B1/chemistry , Aflatoxin B1/metabolism , Animals , Buffers , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , In Vitro Techniques , Ruminants
17.
J Appl Microbiol ; 115(3): 637-43, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23445404

ABSTRACT

The present revision shows the early and current knowledge in the field of silage fungi and mycotoxins explaining the relevance of fungi and mycotoxins in silage. The problem does not end in animal disease or production losses as mycotoxins in feed can lead to the presence of their metabolic products in dairy products, which will be eventually affecting human health, mainly infants. Silage is green forage preserved by lactic fermentation under anaerobic conditions. This ecosystem maintains its quality and nutritional value depending on interactions among physical, chemical and biological agents. Forages used for ensilage are naturally in contact with yeasts and filamentous fungi, and the contamination often occurs in the field and can also occur during harvesting, transport, storage. Moreover, postharvest poor management can lead to a rapid spoilage. Studies on fungal contamination of dairy cattle feed have shown how corn silage influences the contamination degree of feed supplied to livestock. Increasing knowledge in this area will help elucidate the influence that this microbiota exerts on production and/or degradation of mycotoxins present in silage. Some of these fungi, although opportunist pathogens, are relevant epidemiologically and represent a high risk of contamination to farm workers who handle them improperly.


Subject(s)
Fungi/isolation & purification , Mycotoxins/isolation & purification , Silage/microbiology , Animals , Cattle , Fungi/metabolism , Mycotoxicosis/veterinary , Mycotoxins/metabolism
18.
Int J Food Microbiol ; 161(3): 182-8, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23334096

ABSTRACT

The effect of Saccharomyces cerevisiae RC008 and RC016 strains, previously selected based on their aflatoxin B1 mycotoxin binding ability and beneficial properties, against Aspergillus carbonarius and Fusarium graminearum under different interacting environmental conditions was evaluated. In vitro studies on the lag phase, growth rate and ochratoxin A/zearalenone and DON production were carried out under different regimens of a(w) (0.95 and 0.99); pH (4 and 6); temperature (25 and 37 °C) and oxygen availability (normal and reduced). Both yeast strains showed antagonistic activity and decreasing growth rate compared to the control. In general, the RC016 strain showed the greatest inhibitory activity. Except at the interacting condition 0.95 a(W), normal oxygen availability and 37 °C, at both pH values, A. carbonarius and F. graminearum were able to produce large amounts of mycotoxins in vitro. In general, a significant decrease in levels of mycotoxins in comparison with the control was observed. S. cerevisiae RC008 and RC016 could be considered as effective agents to reduce growth and OTA, ZEA and DON production at different interacting environmental conditions, related to those found in stored feedstuff. The beneficial and biocontrol properties of these strains are important in their use as novel additives for the control of mycotoxigenic fungi in stored feedstuffs.


Subject(s)
Antibiosis , Aspergillus/metabolism , Fusarium/metabolism , Mycotoxins/biosynthesis , Saccharomyces cerevisiae/growth & development , Aflatoxin B1/metabolism , Aflatoxin B1/pharmacology , Aspergillus/growth & development , Fusarium/growth & development , Hydrogen-Ion Concentration , Ochratoxins/biosynthesis , Oxygen/metabolism , Temperature , Trichothecenes/biosynthesis , Water/metabolism , Zearalenone/biosynthesis
19.
J Appl Microbiol ; 114(5): 1338-46, 2013 May.
Article in English | MEDLINE | ID: mdl-23347149

ABSTRACT

AIM: To evaluate the ability of probiotic Saccharomyces cerevisiae RC016 strain to reduce fumonisin B(1) (FB(1)) in vitro and to optimize the culture conditions for the growth of the yeast employing surface response methodology. METHODS AND RESULTS: Using Plackett-Burman screening designs (PBSD) and central composite designs (CCD), an optimized culture medium containing (g l(-1)) fermentable sugars provided by sugar cane molasses (CMs), yeast extract (YE) and (NH(4))(2) HPO(4) (DAP) was formulated. The S. cerevisiae RC016 strain showed the greatest binding at all assayed FB1 concentration. The CMs, YE, DAP concentrations and incubation time influenced significantly the biomass of S. cerevisiae RC016. CONCLUSION: A combination of CMs 17%; YE 4·61 g l(-1) and incubation time 60 h was optimum for maximum biomass of S. cerevisiae RC016. SIGNIFICANCE AND IMPACT OF THE STUDY: The importance of this work lies in the search for live strains with both probiotic and fumonisin B1 decontamination properties that could be sustainably produced in a medium just containing cheap carbon, nitrogen and phosphorus sources and would be included in a novel product to animal feed.


Subject(s)
Biomass , Fumonisins/chemistry , Probiotics , Saccharomyces cerevisiae/metabolism , Animal Feed , Bioreactors , Carbon/metabolism , Culture Media/chemistry , Fermentation , Industrial Microbiology , Models, Statistical , Molasses , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Saccharum
20.
J Appl Microbiol ; 114(3): 655-62, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23176728

ABSTRACT

AIMS: To in vitro evaluate the influence of the corn on the adsorption levels of aflatoxin B1 (AFB1) and zearalenone (ZEA) by yeast cell walls (YCWs). METHODS AND RESULTS: Two commercial YCWs were studied. The YCWs contain different percentages of polysaccharides. YCW1 and 2 contain 5.9 and 21% of mannans and 17.4 and 23% of ß-glucans, respectively. Each YCW was resuspended in pH 2 and pH 6 buffer solutions. Corn was used to study the matrix influence. An aliquot of 500 µl YCW suspension was added to each microtube containing 500 µl of 0.1, 0.25, 0.5, 1, 2.5 and 5 µg ml(-1) AFB(1) or 0.5, 5, 10, 20 and 50 µg ml(-1) ZEA. Microtubes were kept with mechanical agitation at 37 °C for 30 min and then centrifuged for 10 min at 16,873 g and; the supernatants were quantified by high-pressure liquid chromatography. The amount of bound toxin was plotted as a function of the amount of added toxin according to mathematical expressions proposed by three theoretical models. Both YCWs were capable of adsorbing AFB(1) and ZEA in amounts from 0.061 to 0.40 and from 0.10 and 0.26 g g(-1), respectively. In the presence of the matrix, both adsorbents were not able to adsorb AFB(1) . However, they could adsorb ZEA at levels from 0.03 to 0.23 g g(-1). CONCLUSIONS: Both YCWs adsorbed ZEA in the presence of corn and also under simulated gastrointestinal pH conditions. These results suggest that the studied YCWs are potential candidates for ZEA adsorption. SIGNIFICANCE AND IMPACT OF THE STUDY: Several in vitro assays have informed the ability of different substrates including yeast walls to adsorb AFB(1) and ZEA; none of them have evaluated their ability to adsorb AFB(1) and ZEA in the presence of the corn. The corn matrix can influence the adsorption phenomena of these mycotoxins.


Subject(s)
Aflatoxin B1/metabolism , Cell Wall/metabolism , Saccharomyces cerevisiae/cytology , Zea mays , Zearalenone/metabolism , Adsorption , Cell Wall/chemistry , Chromatography, High Pressure Liquid , Mannans/chemistry , Models, Theoretical , Saccharomyces cerevisiae/metabolism , beta-Glucans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...